El duopolio en la Teoría de Juegos

En el oligopolio, los resultados que obtiene cada empresa dependen no sólo de su decisión sino de las decisiones de las competidoras. El problema para el empresario, por tanto, implica una elección estratégica que puede ser analizada con las técnicas de la Teoría de Juegos.

Artículos sobre Teoría de Juegos incluidos en este CD-ROM o sitio web:

Supongamos que dos empresas, Hipermercados Xauen y Almacenes Yuste, constituyen un duopolio local en el sector de los grandes almacenes. Cuando llega la época de las tradicionales rebajas de enero, ambas empresas acostumbran a realizar inversiones en publicidad tan altas que suelen implicar la pérdida de todo el beneficio. Este año se han puesto de acuerdo y han decidido no hacer publicidad por lo que cada una, si cumple el acuerdo, puede obtener unos beneficios en la temporada de 50 millones. Sin embargo una de ellas puede preparar en secreto su campaña publicitaria y lanzarla en el último momento con lo que conseguiría atraer a todos los consumidores. Sus beneficios en ese caso serían de 75 millones mientras que la empresa competidora perdería 25 millones.

Los posibles resultados se pueden ordenar en una Matriz de Pagos como la mostrada en el cuadro de la derecha. Cada almacén tiene que elegir entre dos estrategias: respetar el acuerdo ¿Cooperar¿ o hacer publicidad ¿Traicionar¿. Los beneficios o pérdidas mostrados a la izquierda de cada casilla son los que obtiene Xauen cuando elige la estrategia mostrada a la izquierda y Yuste la mostrada arriba. Los resultados a la derecha en las casillas son los correspondientes para Yuste.

COMPETENCIA MEDIANTE PUBLICIDAD:
MATRIZ DE PAGOS

 

Yuste

Cooperar

Traicionar

Xauen

Cooperar

50,50

-25,75

Traicionar

75,-25

0,0

DILEMA DE LOS PRESOS:
MATRIZ DE PAGOS

El que lo máximo que se puede obtener sea 75 M. o 85 M. no tiene mucha influencia sobre la decisión a adoptar, lo único que importa en realidad es la forma en que están ordenados los resultados. Si substituimos el valor concreto de los beneficios por el orden que ocupan en las preferencias de los jugadores, la matriz queda como la mostrada en el cuadro. Las situaciones como las descritas en esta matriz son muy frecuentes en la vida real y reciben el nombre de Dilema de los Presos.

 

Yuste

Cooperar

Traicionar

Xauen

Cooperar

2º,2º

4º,1º

Traicionar

1º,4º

3º,3º*

Veamos cuál debe ser la decisión a adoptar por esos almacenes. El director de la división de estrategia de Xauen pensará: "Si Yuste no hace publicidad, a nosotros lo que más nos conviene es traicionar el acuerdo, pero si ellos son los primeros en traicionar, a nosotros también nos convendrá hacerlo. Sea cual sea la estrategia adoptada por nuestros competidores, lo que más nos conviene es traicionarles".

El director de la división de estrategia de Yuste hará un razonamiento similar. Como consecuencia de ello ambos se traicionarán entre sí y obtendrán resultados peores que si hubieran mantenido el acuerdo. La casilla de la matriz de pagos marcada con un asterisco es la única solución estable: es un punto de equilibrio de Nash. Contrariamente a las argumentaciones de Adam Smith, en las situaciones caracterizadas por el Dilema de los Presos si los agentes actúan buscando de forma racional su propio interés, una "mano invisible" les conducirá a un resultado socialmente indeseable.

Supongamos ahora otra situación ligeramente diferente. Si ambas empresas se enredan en una guerra de precios, haciendo cada vez mayores rebajas, ambas sufrirán importantes pérdidas, 25 millones cada una. Han llegado al acuerdo de no hacer rebajas con lo que cada una podrá ganar 50 millones. Si una de ellas, incumpliendo el acuerdo, hace en solitario una pequeña rebaja, podrá obtener un beneficio de 75 millones mientras que la otra perdería muchos clientes quedándose sin beneficios ni pérdidas.

COMPETENCIA EN PRECIOS:
MATRIZ DE PAGOS

 

Yuste

Cooperar

Traicionar

Xauen

Cooperar

50,50

0,75

Traicionar

75,0

-25,-25

HALCÓN-PALOMA:
MATRIZ DE PAGOS

Si, como en el caso anterior, substituimos los valores concretos por su orden en la escala de preferencias obtenemos una matriz que es conocida en Teoría de Juegos como Gallina o Halcón-Paloma.

 

Yuste

Cooperar

Traicionar

Xauen

Cooperar

2º,2º

3º,1º*

Traicionar

1º,3º*

4º,4º

El razonamiento de los estrategas será ahora diferente: "Si nuestros competidores cooperan, lo que más nos interesa es traicionarles, pero si ellos nos traicionan será preferible que nos mostremos cooperativos en vez de enredarnos en una guerra de precios. Hagan lo que hagan ellos, nos interesará hacer lo contrario".

En el juego "Gallina" el orden en que actúen los jugadores es muy importante. El primero en intervenir decidirá Traicionar, forzando al otro a Cooperar y obteniendo así el mejor resultado. La solución de equilibrio puede ser cualquiera de las dos marcadas con un asterisco en la matriz de pagos, dependiendo de cuál haya sido el primer jugador en decidirse. Ambas soluciones son puntos de equilibrio de Nash.

En casi todos los modelos, sea cual sea la forma de la matriz, el protocolo o reglas del juego influirá mucho en la solución. Además del orden de intervención de los jugadores, habrá que tener en cuenta si el juego se realiza una sola vez o si se repite cierto número de veces, la información de que disponen en cada momento, el número de jugadores que intervienen y la posibilidad de formar coaliciones, etc.  


    Esta página ha sido actualizada por última vez el 25 de febrero de 2009

Para citar este artículo en cualquier documento puede utilizar el siguiente formato:
---------
Martínez Coll, Juan Carlos (2001):  "Los mercados no competitivos"
en La Economía de Mercado, virtudes e inconvenientes  
http://www.eumed.net/cursecon/8/index.htm
   edición del 25 de febrero de 2009

Volver al índice

Enciclopedia Virtual
Tienda
Libros Recomendados


1647 - Investigaciones socioambientales, educativas y humanísticas para el medio rural
Por: Miguel Ángel Sámano Rentería y Ramón Rivera Espinosa. (Coordinadores)

Este libro es producto del trabajo desarrollado por un grupo interdisciplinario de investigadores integrantes del Instituto de Investigaciones Socioambientales, Educativas y Humanísticas para el Medio Rural (IISEHMER).
Libro gratis
Congresos

9 al 23 de octubre
VI Congreso Virtual Internacional sobre

Arte y Sociedad: Paradigmas digitales

16 al 30 de octubre
II Congreso Virtual Internacional sobre

Migración y Desarrollo

1 al 15 de noviembre
II Congreso Virtual Internacional sobre

Desigualdad Social, Económica y Educativa en el Siglo XXI

4 al 15 de diciembre
V Congreso Virtual Internacional sobre

Transformación e innovación en las organizaciones

11 al 22 de diciembre
I Congreso Virtual Internacional sobre

Economía Social y Desarrollo Local Sostenible

Enlaces Rápidos

Fundación Inca Garcilaso
Enciclopedia y Biblioteca virtual sobre economía
Universidad de Málaga