5.3 DESVIACIÓN ESTÁNDAR

Habíamos visto que la varianza transforma todas las distancias a valores positivos elevándolas al cuadrado, con el inconveniente de elevar consigo las unidades de los datos originales.

La desviación estándar soluciona el problema obteniendo la raíz cuadrada de la varianza, consiguiendo así, un valor similar a la desviación media.

Desviación estándar o típica (S o ): Es igual a la raíz cuadrada de la varianza.

La S representa la desviación estándar de una muestra, mientras que σ la desviación para todos los datos de una población. Ampliando las fórmulas tenemos

Aplicamos el mismo procedimiento a las fórmulas para las tablas de frecuencias tipo A.

Y para las tablas de frecuencias tipo B.

5.3.1 Ejemplo: Desviación estándar para datos no agrupados

Calcular la desviación estándar al siguiente conjunto de datos muestrales.

 

220

215

218

210

210

219

208

207

213

225

213

204

225

211

221

218

200

205

220

215

217

209

207

211

218

PASO 1: Calcular la media aritmética.

PASO 2: Calcular la varianza

En este punto, la varianza es identificada por S2.

PASO 3: Calcular la desviación estándar a partir de la raíz cuadrada de la varianza.

Los datos se alejan en promedio de la media aritmética en 6,5516 puntos.

5.3.2 Ejemplo: Desviación estándar para datos agrupados

Calcular la desviación estándar a partir de la siguiente tabla de frecuencia. Considere los datos como poblacionales.

 

No.

Lm

Ls

f

Mc

1

13,20

15,21

15

14,21

2

15,21

17,21

10

16,21

3

17,21

19,21

1

18,21

4

19,21

21,21

4

20,21

5

21,21

23,21

5

22,21

6

23,21

25,21

12

24,21

7

25,21

27,20

1

26,21

Total

48


 

PASO 1: Calcular la media aritmética.

PASO 2: Calcular la varianza

En este punto, la varianza es identificada por σ2.

PASO 3: Calcular la desviación estándar a partir de la raíz cuadrada de la varianza.

Los datos se alejan en promedio de la media aritmética en 7,6239 puntos.

5.3.3 Cálculo de la Desviación estándar en Excel

Al igual que en la varianza, Excel posee dos funciones para el cálculo de la media, diferenciando los datos muestrales de los datos poblacionales.

DESVEST: Calcula la desviación estándar de una muestra.

Formato: DESVEST(número1;número2;…)

Categoría: Estadísticas

 

DESVESTP: Calcula la desviación estándar de todos los datos de una población.

Formato: DESVESTP(número1;número2;…)

Categoría: Estadísticas

Tomemos los datos del ejemplo 5.2.1 para aplicar la fórmula de desviación estándar para datos muestrales. Copie los datos a una hoja en blanco en Excel:

En la celda B8 active la función DESVEST, marcando en la primera casilla, losdatos del ejercicio y luego pulsando en el botón aceptar.

El resultado es de aproximadamente 6,5516.

Para datos agrupados, calcularemos la varianza tal cual como se mostró en la sección 5.2.3 para luego calcular su raíz cuadrada con la función RAIZ:

RAIZ: Calcula la raíz cuadrada de un número.

Formato: RAIZ(número1)

Categoría: Matemáticas y trigonométricas

Calculemos la raíz cuadrada de una tabla de frecuencia sencilla.
 

Ni

Clase

f

1

4

15

2

5

10

3

6

1

4

7

4

5

8

5

6

9

12

Total

47

En la celda B11 hallamos la media aritmética de la tabla.

En una columna nueva colocamos las distancias de las clases respecto a la media, multiplicadas por sus frecuencias respectivas.

Dividimos el total de las distancias al cuadrado por el número de datos (colocamos el resultado en la celda B12).

La desviación será igual a la raíz cuadrada del valor contenido en la celda B12.

La desviación estándar es de 2,0622.

Grupo EUMEDNET de la Universidad de Málaga Mensajes cristianos
Enciclopedia Virtual
Economistas Diccionarios Presentaciones multimedia y vídeos Manual Economía
Biblioteca Virtual
Libros Gratis Tesis Doctorales Textos de autores clásicos y grandes economistas
Revistas
Contribuciones a la Economía, Revista Académica Virtual
Contribuciones a las Ciencias Sociales
Observatorio de la Economía Latinoamericana
Revista Caribeña de las Ciencias Sociales
Revista Atlante. Cuadernos de Educación
Otras revistas

Servicios
Publicar sus textos Tienda virtual del grupo Eumednet Congresos Académicos - Inscripción - Solicitar Actas - Organizar un Simposio Crear una revista Novedades - Suscribirse al Boletín de Novedades
 
Todo en eumed.net:
Eumed.net

Congresos Internacionales


¿Qué son?
 ¿Cómo funcionan?

 

7 al 24 de
octubre
XII Congreso EUMEDNET sobre
Globalización y Crisis Financiera




Aún está a tiempo de inscribirse en el congreso como participante-espectador.


Próximos congresos

 

10 al 29 de
octubre
II Congreso EUMEDNET sobre
Arte y Sociedad

4 al 21 de
noviembre
XI Congreso EUMEDNET sobre
Migraciones, Causas y Consecuencias

17 al 28 de
noviembre
II Congreso EUMEDNET sobre
El Derecho Civil en Latinoamérica y Filipinas: Concordancias y Peculiaridades

24 de noviembre al 12 de
diciembre
II Congreso EUMEDNET sobre
Transformación e innovación en las organizaciones

3 al 20 de
diciembre
XI Congreso EUMEDNET sobre
Desarrollo Local en un Mundo Global

 

 

 

 

Encuentros de economia internacionales a traves de internet


Este sitio web está mantenido por el grupo de investigación eumednet con el apoyo de Servicios Académicos Internacionales S.C.

Volver a la página principal de eumednet