![]() |
César Aching Guzmán
Las perpetuidades
Por definición significa duración sin fin. Duración muy larga o incesante.
A partir del valor actual (VA) de una anualidad C, que representa una serie de pagos, depósitos o flujo periódico uniforme para cada uno de estos periodos y efectuando algunas modificaciones podríamos derivar las perpetuidades. La característica de una perpetuidad es que el número de periodos es grande, de forma que el valor de los últimos flujos al descontarlos es insignificante. El valor de la anualidad de muchos términos, llamada perpetuidad, es calculada con la siguiente fórmula:
Las perpetuidades permiten cálculos rápidos para determinar el valor de instrumentos de renta fija (VAP) de muchos periodos. En este caso, «C» es el rendimiento periódico e «i» la tasa de interés relevante para cada período. Ejemplos de perpetuidades son también las inversiones inmobiliarias con canon de arrendamiento, dada la tasa de interés aproximamos el valor de la inversión (C).
Por lo general, la tasa de interés es casi siempre anual y el canon de arriendo es mensual, por lo cual deberá establecerse la tasa de interés equivalente (Ver definición y fórmula en el numeral 10, de este capítulo) para este período de tiempo. Otras aplicaciones importantes son las pensiones o rentas vitalicias.
EJERCICIO 23 (Perpetuidad)
Para que mis 2 hijos estudien becados en una universidad de prestigio, dentro de 10 años, es requisito fundamental -entre otros- depositar el día de hoy una suma de dinero en una institución financiera que paga mensualmente por ahorros de este tipo el 1.5% y que permite a la institución disponer de UM 2,500 mensuales a perpetuidad. ¿Cuánto debo depositar el día de hoy?.
Solución:
C = 2,500; i = 0.005; VAP = ?
Respuesta:
Debo depositar el día de hoy UM 166,6667. Mensualmente el dinero gana UM 2,500 de interés. Este interés constituye la beca.