BIBLIOTECA VIRTUAL de Derecho, Economía y Ciencias Sociales

DESCIFRANDO A SRAFFA

Antonio Mora Plaza




Esta página muestra parte del texto pero sin formato.

Puede bajarse el libro completo en PDF comprimido ZIP (269 páginas, 1.90 Mb) pulsando aquí

 


Anexo 16a: Producción simple

PY=(1+g)PX+wL

sumas sumas

13 0 0 13 4 4 3 11

Y= 0 11 0 11 X= 3 5 2 10

0 0 20 20 4 8 4 16

w= 0,7 g= 4% L= 0,4 0,5 0,1 1

0,077 0,000 0,000 0,308 0,364 0,150

Y-1= 0,000 0,091 0,000 A=XY-1 0,231 0,455 0,100

0,000 0,000 0,050 0,308 0,727 0,200

P=wLY-1(I-(1+g)A)-1= 0,07 0,15 0,04

Anexo 16b: Producción conjunta

PY=(1+g)PX+wL

sumas sumas

3 4 6 13 4 4 3 11

Y= 7 2 2 11 X= 3 5 2 10

5 3 12 20 4 8 4 16

w= 0,7 g= 4% L= 0,4 0,5 0,1 1

-0,10 0,17 0,02 1,09 0,36 -0,35

Y-1= 0,42 -0,03 -0,20 A=XY-1 1,67 0,22 -0,70

-0,06 -0,06 0,13 2,70 0,16 -1,05

P=wLY-1(I-(1+g)A)-1= 0,46 0,16 -0,16

Puede comprobarse en estos anexos 14a y 14b que, a pesar de que la suma del producto final de cada mercancía (fila) es la misma en la producción simple que en la conjunta, el resultado de su inversa Y-1 es distinto, por lo que los precios finales son distintos. En cuanto a la matriz A de requerimientos tiene elementos negativos en la producción conjunta y no puede haberlos en la producción simple.

Anexos 16c y 16d

Excedente neto físico y tasa de ganancia máxima

modelo: PY = (1 + g) PX + wL L= 0,19 0,31 0,50 1,0

productos finales sumas medios de producción sumas

180 0 0 180 90 50 40 180

Y= 0 450 0 450 X= 120 125 40 285

0 0 480 480 60 150 200 410

w= 0,7 g = 19,99% 0,500 0,111 0,083 0,69

A=XY-1 0,667 0,278 0,083 1,03

0,0056 0 0 0,333 0,333 0,417 1,08

Y-1= 0 0,0022 0 1,500 0,722 0,583

0 0 0,0021

0,694 < autovalor < 1,083

excedente físico relativo

0,0% 57,9% 17,1% 44% < R < 71%

P=wLY-1(I-(1+g)A)-1= 16,74 6,09 4,57

Excedente neto físico y tasa de ganancia máxima

modelo: PY = (1 + g) PX + wL L= 0,19 0,31 0,50 1,0

productos finales sumas medios de producción sumas

180 0 0 180 90 50 40 180

Y= 0 450 0 450 X= 120 125 40 285

0 0 480 480 60 150 200 410

w= 0,7 g = 20,01% 0,500 0,111 0,083 0,69

A=XY-1 0,667 0,278 0,083 1,03

0,0056 0 0 0,333 0,333 0,417 1,08

Y-1= 0 0,0022 0 1,500 0,722 0,583

0 0 0,0021

0,694 < autovalor < 1,083

excedente físico relativo

0,0% 57,9% 17,1% 44% < R < 71%

P=wLY-1(I-(1+g)A)-1= -16,74 -6,09 -4,56

La única diferencia entre los cuadros de los anexos 14c y 14d es la tasa de ganancia. En el 14c, la tasa de ganancia g es 19,99%; en el 14d, la tasa es de 20,01%. En ambos se toma esta tasa como variable independiente. Con 19,99% los precios aún son positivos; con 20,01% ya hemos pasado a negativos. El ejemplo es el mismo que pone Sraffa en su libro y él calcula que la razón-patrón es el 20%. Vemos aquí que la tasa máxima de ganancia (que aquí es g) coincide con la razón-patrón porque ambos están en la frontera del paso de los precios positivos a negativos. El autovalor mayor (que es el único que garantiza un vector de precios positivos) de A=XY-1 es u=0,8333, con el cual se haya la razón-patrón mediante R=(1-u)/u, que es justamente igual a 20%. El método del recuento de Sraffa falla. En efecto, el menor valor del excedente relativo se da en la primera mercancía y vale cero, a pesar de lo cual sí hay un autovalor -como hemos visto- que garantiza un vector de precios positivo.

Anexo 16e

Excedente neto físico y tasa de ganancia máxima (p. simple)

P Y = (1 + g) P X + w L L= 0,188 0,313 0,500 1,00

productos finales sumas medios de producción sumas

450 0 0 450 186 54 30 270

Y= 0 21 0 21 X= 12 6 3 21

0 0 60 60 9 6 15 30

w= 0,7 g = 48,253% 0,413 2,571 0,500 3,48

A=XY-1 = 0,027 0,286 0,050 0,36

0,002 0 0 0,020 0,286 0,250 0,56

Y-1= 0 0,048 0 0,460 3,143 0,800

0 0 0,017

0,460 < autovalor máximo < 3,143

excedente físico relativo u=1 / (1+ g=Gm)

66,7% 0,0% 100% u = 0,6745

Pasinetti, pág. 130 Razón-patrón= 48,25%

P = w LY-1( I-(1+g)A)-1 = 191 1563 409 PYI= 143.270,4

Este anexo y los tres siguen se han tomado de ejemplos de los libros de Pasinetti (Lecciones de la teoría de la producción) y de J.M.Vegara (Economía política y modelos multisectoriales). En los tres se ha llegado a las razones-patrón mediante el método de prueba y error, haciendo variar la tasa de ganancia g hasta encontrar un valor para PYI tal que pase del más infinito a menos infinito. Por supuesto que aquí se trata de grados de aproximación, y nos hemos detenido en las milésimas del porcentaje. En el anexo 14e lo hemos hecho cuando la tasa de ganancia valía 48,253%, en el anexo 14c cuando era de 19,999% y en el anexo 14d cuando era de 18,537%. En los tres casos un aumento en la tercera cifra decimal pasaría el valor de PYI de más a menos. En los tres casos coinciden la tasa máxima de ganancia así obtenida con las razones-patrón calculadas por los autores de los libros mediante Perron-Froebenius.

Anexo 16f

Excedente neto físico y tasa de ganancia máxima

modelo: PY = (1 + g) PX + wL L= 0,19 0,31 0,50 1,0

productos finales sumas medios de producción sumas

180 0 0 180 90 50 40 180

Y= 0 450 0 450 X= 120 125 40 285

0 0 480 480 60 150 200 410

w= 0,7 g = 19,99% 0,500 0,111 0,083 0,69

A=XY-1 0,667 0,278 0,083 1,03

0,0056 0 0 0,333 0,333 0,417 1,08

Y-1= 0 0,0022 0 1,500 0,722 0,583

0 0 0,0021

0,694 < autovalor < 1,083

excedente físico relativo

0,0% 57,9% 17,1% 44% < R < 71%

P=wLY-1(I-(1+g)A)-1= 16,74 6,09 4,57

Anexo 16g

Excedente neto físico y tasa de ganancia máxima (p.simple)

P Y = (1 + g) P X + w L L= 0,188 0,313 0,500 1,00

productos finales sumas medios de producción sumas

450 0 0 450 222 78 90 390

Y= 0 21 0 21 X= 12 6 3 21

0 0 60 60 12 8 20 40

w= 0,7 g = 18,537% 0,493 3,714 1,500 5,71

A=XY-1 = 0,027 0,286 0,050 0,36

0,002 0 0 0,027 0,381 0,333 0,74

Y-1= 0 0,048 0 0,547 4,381 1,883

0 0 0,017

0,547 < autovalor máximo < 4,381

excedente físico relativo u=1 / (1+ g=Gm)

15,4% 0,0% 50% u = 0,8436

Pasinetti, pág. 190 Razón-patrón= 18,54%

P = w LY-1( I-(1+g)A)-1 = 218 2021 838 PYI= 190.605,5


Grupo EUMEDNET de la Universidad de Málaga Mensajes cristianos

Venta, Reparación y Liberación de Teléfonos Móviles
 
Todo en eumed.net:

Congresos Internacionales


¿Qué son?
 ¿Cómo funcionan?

 

15 al 29 de
julio
X Congreso EUMEDNET sobre
Turismo y Desarrollo




Aún está a tiempo de inscribirse en el congreso como participante-espectador.


Próximos congresos

 

06 al 20 de
octubre
I Congreso EUMEDNET sobre
Políticas públicas ante la crisis de las commodities

10 al 25 de
noviembre
I Congreso EUMEDNET sobre
Migración y Desarrollo

12 al 30 de
diciembre
I Congreso EUMEDNET sobre
Economía y Cambio Climático

 

 

 

 

Encuentros de economia internacionales a traves de internet


Este sitio web está mantenido por el grupo de investigación eumednet con el apoyo de Servicios Académicos Internacionales S.C.

Volver a la página principal de eumednet