BIBLIOTECA VIRTUAL de Derecho, Economía y Ciencias Sociales


EL CAUDAL MÍNIMO MEDIOAMBIENTAL DEL TRAMO INFERIOR DEL RÍO EBRO

Josep Maria Franquet Bernis



Esta página muestra parte del texto pero sin formato.

Puede bajarse el libro completo en PDF comprimido ZIP (341 páginas, 12,8 Mb) pulsando aquí

 

 

2.3. Cálculo de los periodos de retorno para los caudales de la estación seca

2.3.1. Caudales en el periodo estival

Considerando, ahora, los caudales correspondientes al trimestre estival (meses de julio, agosto y septiembre), vemos que:

= 89,20 m3/seg. Además:

σ = 88,48 m3/seg. (desviación típica del universo o población), con lo que:

, que es el coeficiente de variación de Pearson (en el que se ha eliminado la influencia de la unidad de medida de los valores de la variable aleatoria estadística que, en nuestro caso, es el caudal del periodo estival).

2.3.2. Periodo de retorno de 3 años

Aplicando la misma metodología que en el caso anterior, se tiene:

qp = 194’85 – 0’5951059 x 89’20=141’77 m3/seg.

2.3.3. Periodo de retorno de 4 años

qp = 194’85 – 0’95949 x 89’20=109’26 m3/seg.

2.3.4. Periodo de retorno de 5 años

qp = 194’85 – 1’1732291 x 89’20 = 90’20 m3/seg.

2.3.5. Periodo de retorno de 10 años

qp = 194’85 – 1’7581877 x 89’20 = 38’02 m3/seg.

2.3.6. Periodo de retorno de 15 años

qp = 194’85 – 2’0451552 x 89’20 = 12’42 m3/seg.

No procede continuar con períodos de retorno mayores, al resultar negativa la estimación del caudal.

2.3.7. Caudales según periodos de recurrencia

En base a las mismas consideraciones efectuadas para el caso anterior de los caudales mínimos mensuales (mes de agosto), la “función de retorno” correspondiente a la estación seca o periodo estival se deducirá de la siguiente tabla:

El ajuste efectuado es el siguiente:

Estimación curvilínea caudal periodo estival

Se trata de la función semilogarítmica natural o neperiana:

q = 221,668 – (78,712 • ln n)

Variable independiente: Periodo de retorno

Dependent Mth Rsq d.f. F Sigf b0 b1

Caudal LOG ,991 3 336,39 ,000 221,668 -78,712

Las representaciones gráficas de ambas funciones (la observada y su ajuste semilogarítmico minimocuadrático) pueden verse a continuación:

También en este caso se produce una correlación negativa prácticamente perfecta (inversa). Aquí:

Cuando q = 0 m3/seg., ln n = 2’8162,

con lo que: n = anti ln 2’8162 = 16’71 años.

Por último, la función que nos ocupa, con la misma configuración analítica que la anterior, posee una rama parabólica horizontal (según el eje de abscisas).


Grupo EUMEDNET de la Universidad de Málaga Mensajes cristianos

Venta, Reparación y Liberación de Teléfonos Móviles
Enciclopedia Virtual
Biblioteca Virtual
Servicios
 
Todo en eumed.net:

Congresos Internacionales


¿Qué son?
 ¿Cómo funcionan?

 

15 al 29 de
julio
X Congreso EUMEDNET sobre
Turismo y Desarrollo




Aún está a tiempo de inscribirse en el congreso como participante-espectador.


Próximos congresos

 

06 al 20 de
octubre
I Congreso EUMEDNET sobre
Políticas públicas ante la crisis de las commodities

10 al 25 de
noviembre
I Congreso EUMEDNET sobre
Migración y Desarrollo

12 al 30 de
diciembre
I Congreso EUMEDNET sobre
Economía y Cambio Climático

 

 

 

 

Encuentros de economia internacionales a traves de internet


Este sitio web está mantenido por el grupo de investigación eumednet con el apoyo de Servicios Académicos Internacionales S.C.

Volver a la página principal de eumednet