BIBLIOTECA VIRTUAL de Derecho, Economía y Ciencias Sociales

 

APUNTES DE ESTADÍSTICA

 

David Ruiz Muñoz y Ana María Sánchez Sánchez

 

 

 

 

Esta página muestra parte del texto pero sin formato.

Puede bajarse el libro completo en PDF comprimido ZIP (113 páginas, 705 kb) pulsando aquí

 

 

 

 

Capítulo VII  PROBABILIDAD

1. Introducción

• Se indicaba en el capítulo anterior que cuando un experimento aleatorio se repite un gran número de veces, los posibles resultados tienden a presentarse un número muy parecido de veces, lo cual indica que la frecuencia de aparición de cada resultado tiende a estabilizarse.
• El concepto o idea que generalmente se tiene del término probabilidad es adquirido de forma intuitiva, siendo suficiente para manejarlo en la vida corriente.

Nos interesa ahora la medida numérica de la posibilidad de que ocurra un suceso A cuando se realiza el experimento aleatorio. A esta medida la llamaremos probabilidad del suceso A y la representaremos por p(A).

La probabilidad es una medida sobre la escala 0 a 1 de tal forma que:
• Al suceso imposible le corresponde el valor 0
• Al suceso seguro le corresponde el valor 1
• El resto de sucesos tendrán una probabilidad comprendida entre 0 y 1

El concepto de probabilidad no es único, pues se puede considerar desde distintos puntos de vista:
• El punto de vista objetivo
• Definición clásica o a priori
• Definición frecuentista o a posteriori
• El punto de vista subjetivo


2. Definición Clásica de la Probabilidad

Esta definición clásica de probabilidad fue una de las primeras que se dieron (1900) y se atribuye a Laplace; también se conoce con el nombre de probabilidad a priori pues, para calcularla, es necesario conocer, antes de realizar el experimento aleatorio, el espacio muestral y el número de resultados o sucesos elementales que entran a formar parte del suceso.

La aplicación de la definicion clásica de probabilidad puede presentar dificultades de aplicación cuando el espacio muestral es infinito o cuando los posibles resultados de un experimento no son equiprobables. Ej: En un proceso de fabricación de piezas puede haber algunas defectuosas y si queremos determinar la probabilidad de que una pieza sea defectuosa no podemos utilizar la definición clásica pues necesitaríamos conocer previamente el resultado del proceso de fabricación.
Para resolver estos casos, se hace una extensión de la definición de probabilidad, de manera que se pueda aplicar con menos restricciones, llegando así a la definición frecuentista de probabilidad.


3. Definición Frecuentista de la Probabilidad

La definición frecuentista consiste en definir la probabilidad como el límite cuando n tiende a infinito de la proporción o frecuencia relativa del suceso.

Es imposible llegar a este límite, ya que no podemos repetir el experimiento un número infinito de veces, pero si podemos repetirlo muchas veces y observar como las frecuencias relativas tienden a estabilizarse.

Esta definición frecuentista de la probabilidad se llama también probabilidad a posteriori ya que sólo podemos dar la probabilidad de un suceso después de repetir y observar un gran número de veces el experimento aleatorio correspondiente. Algunos autores las llaman probabilidades teóricas.

4. Definición Subjetiva de la Probabilidad

Tanto la definición clásica como la frecuentista se basan en las repeticiones del experimento aleatorio; pero existen muchos experimentos que no se pueden repetir bajo las mismas condiciones y por tanto no puede aplicarse la interpretación objetiva de la probabilidad.
En esos casos es necesario acudir a un punto de vista alternativo, que no dependa de las repeticiones, sino que considere la probabilidad como un concepto subjetivo que exprese el grado de creencia o confianza individual sobre la posibilidad de que el suceso ocurra.
Se trata por tanto de un juicio personal o individual y es posible por tanto que, diferentes observadores tengan distintos grados de creencia sobre los posibles resultados, igualmente válidos.


5. Definición Axiomática de la Probabilidad

La definición axiomática de la probabilidad es quizás la más simple de todas las definiciones y la menos controvertida ya que está basada en un conjunto de axiomas que establecen los requisitos mínimos para dar una definición de probabilidad.

La ventaja de esta definición es que permite un desarrollo riguroso y matemático de la probabilidad. Fue introducida por A. N. Kolmogorov y aceptada por estadísticos y matemáticos en general.

Definición

 

6. Teoremas Elementales o Consecuencias de los Axiomas

Los siguientes resultados se deducen directamente de los axiomas de probabilidad.
Teorema I
 

7. Probabilidad Condicionada

Hasta ahora hemos introducido el concepto de probabilidad considerando que la única información sobre el experimiento era el espacio muestral. Sin embargo hay situaciones en las que se incorpora información suplementaria respecto de un suceso relacionado con el experimento aleatorio, cambiando su probabilidad de ocurrencia.

El hecho de introducir más información, como puede ser la ocurrencia de otro suceso, conduce a que determinados sucesos no pueden haber ocurrido, variando el espacio de resultados y cambiando sus probabilidades.

Definición
 

8. Teorema de la Probabilidad Compuesta o Producto

9. Teorema de la Probabilidad Total

10. Teorema de Bayes

11.Independencia de Sucesos

Grupo EUMEDNET de la Universidad de Málaga Mensajes cristianos
 
Todo en eumed.net:

Congresos Internacionales


¿Qué son?
 ¿Cómo funcionan?

 

7 al 24 de
octubre
XII Congreso EUMEDNET sobre
Globalización y Crisis Financiera




Aún está a tiempo de inscribirse en el congreso como participante-espectador.


Próximos congresos

 

10 al 29 de
octubre
II Congreso EUMEDNET sobre
Arte y Sociedad

4 al 21 de
noviembre
XI Congreso EUMEDNET sobre
Migraciones, Causas y Consecuencias

17 al 28 de
noviembre
II Congreso EUMEDNET sobre
El Derecho Civil en Latinoamérica y Filipinas: Concordancias y Peculiaridades

24 de noviembre al 12 de
diciembre
II Congreso EUMEDNET sobre
Transformación e innovación en las organizaciones

3 al 20 de
diciembre
XI Congreso EUMEDNET sobre
Desarrollo Local en un Mundo Global

 

 

 

 

Encuentros de economia internacionales a traves de internet


Este sitio web está mantenido por el grupo de investigación eumednet con el apoyo de Servicios Académicos Internacionales S.C.

Volver a la página principal de eumednet