MANUAL DE ESTADÍSTICAS

David Ruíz Muñoz
Universidad Pablo de Olavide

Capítulo III : Distribuciones Bidimensionales

Dependencia e Independencia

Independencia

Cuando no se da ningún tipo de relación entre 2 variables o atributos, diremos que son independientes

Dos variables X e Y, son independientes entre si, cuando una de ellas no influye en la distribución de la otra condicionada por el valor que adopte la primera. Por el contrario existirá dependencia cuando los valores de una distribución condicionan a los de la otra

Dada dos variables estadísticas X e Y, la condición necesaria y suficiente para que sean independientes es:

Propiedades:

  1. Si X es independiente de Y, las distribuciones condicionadas de X/Yj son idénticas a la distribución marginal de X

  2. Si X es independiente de Y, Y es independiente de X

  3. Si X e Y son 2 variables estadísticamente independientes, su covarianza es cero. La recíproca de esta propiedad no es cierta, es decir, la covarianza de 2 variables puede tomar valor cero, y no ser independientes

Dependencia funcional

( existe una relación matemática exacta entre ambas variables ) El carácter X depende del carácter Y, si a cada modalidad yj de Y corresponde una única modalidad posible de X. Por lo tanto cualquiera que sea j, la frecuencia absoluta nij vale cero salvo para un valor de i correspondiente a una columna j tal que nij = n.j Cada columna de la tabla de frecuencias tendrá, por consiguiente, un único término distinto de cero. Si a cada modalidad xi de X corresponde una única modalidad posible de Y, será Y dependiente de X. La dependencia de X respecto de Y no implica que Y dependa de X

Para que la dependencia sea recíproca, los caracteres X e Y deben presentar el mismo número de modalidades ( debe ser n=m) y en cada fila como en cada columna de la tabla debe haber uno y solo un término diferente de cero

Sea X el salario de un empleado e Y la antigüedad del mismo en la empresa

Dependencia funcional recíproca: X depende de Y e Y depende de X

Y depende de X pero X no depende de Y

Dependencia estadística

( existe una relación aproximada ) Existen caracteres que ni son independientes, ni se da entre ellos una relación de dependencia funcional, pero si se percibe una cierta relación de dependencia entre ambos; se trata de una dependencia estadística

Cuando los caracteres son de tipo cuantitativo, el estudio de la dependencia estadística se conoce como el problema de " regresión ", y el análisis del grado de dependencia que existe entre las variables se conoce como el problema de correlación

Regresión y correlación lineal simple

Introducción a la regresión lineal simple

Cuando se estudian dos características simultáneamente sobre una muestra, se puede considerar que una de ellas influye sobre la otra de alguna manera. El objetivo principal de la regresión es descubrir el modo en que se relacionan

Por ejemplo, en una tabla de pesos y alturas de 10 personas se puede suponer que la variable "Altura" influye sobre la variable "Peso" en el sentido de que pesos grandes vienen explicados por valores grandes de altura (en general). De las dos variables a estudiar, que vamos a denotar con X e Y, vamos a llamar a la X VARIABLE INDEPENDIENTE o EXPLICATIVA, y a la otra, Y, le llamaremos VARIABLE DEPENDIENTE o EXPLICADA.

En la mayoría de los casos la relación entre las variables es mutua, y es difícil saber qué variable influye sobre la otra. En el ejemplo anterior, a una persona que mide menos le supondremos menor altura y a una persona de poca altura le supondremos un peso más bajo. Es decir, se puede admitir que cada variable influye sobre la otra de forma natural y por igual. Un ejemplo más claro donde distinguir entre variable explicativa y explicada es aquel donde se anota, de cada alumno de una clase, su tiempo de estudio (en horas) y su nota de examen.

En este caso un pequeño tiempo de estudio tenderá a obtener una nota más baja, y una nota buena nos indicará que tal vez el alumno ha estudiado mucho. Sin embargo, a la hora de determinar qué variable explica a la otra, está claro que el "tiempo de estudio" explica la "nota de examen" y no al contrario, pues el alumno primero estudia un tiempo que puede decidir libremente, y luego obtiene una nota que ya no decide arbitrariamente. Por tanto, X = Tiempo de estudio (variable explicativa o independiente) Y = Nota de examen (variable explicada o dependiente) El problema de encontrar una relación funcional entre dos variables es muy complejo, ya que existen infinidad de funciones de formas distintas. El caso más sencillo de relación entre dos variables es la relación LINEAL, es decir que Y = a + b X

(es la ecuación de una recta) donde a y b son números, que es el caso al que nos vamos a limitar.

Cualquier ejemplo de distribución bidimensional nos muestra que la relación entre variables NO es EXACTA (basta con que un dato de las X tenga dos datos distintos de Y asociados, como en el ejemplo de las Alturas y Pesos, que a 180 cm. de altura le correspondía un individuo de 82 kg. y otro de 78 kg.).

Sabiendo que:

PROPIEDADES:

Correlación lineal simple ( r ó R )

Para ver si existe relación lineal entre dos variables X e Y, emplearemos un parámetro que nos mida la fuerza de asociación lineal entre ambas variables. La medida de asociación lineal mas frecuentemente utilizada entre dos variables es " r " o coeficiente de correlación lineal de Pearson; este parámetro se mide en términos de covarianza de X e Y.

Enciclopedia Virtual
Tienda
Libros Recomendados


Real como la economía misma
Por: Armando Roselló
Un desfile de historias y de personajes. El cazador paleolítico, el agricultor neolítico, el rey sumerio, el ciudadano romano, el abad medieval ... Además de una historia económica de la humanidad, los comentarios intercalados a esas historias van mostrando conceptos básicos de Economía y explicando su funcionamiento. Pero además de los conceptos clásicos el autor propone su propia visión heterodoxa de muchos problemas económicos.
Libro gratis
Congresos

Próximos congresos

24 de noviembre al 12 de diciembre
II Congreso EUMEDNET sobre

Transformación e innovación en las organizaciones

3 al 20 de diciembre
XI Congreso EUMEDNET sobre

Desarrollo Local en un Mundo Global

9 al 26 de enero
X Congreso EUMEDNET sobre

Las Micro, Pequeñas y Medianas Empresas del S. XXI

5 al 20 de febrero
X Congreso EUMEDNET sobre

Educación, Cultura y Desarrollo

Enlaces Rápidos


Suscribase a nuestros boletines
y recibirá toda las novedades.
Introduce tu email.

Fundación Inca Garcilaso
Enciclopedia y Biblioteca virtual sobre economía
Universidad de Málaga