LA MICROECONOMÍA


Bernard Guerrien

Teoría de juegos y el teorema del punto fijo

Los juegos de sociedad, las apuestas y, mas generalmente los “juegos de azar” han interesado desde hace tiempo a los matemáticos, comenzando por Pascal y Bernouilli. Incluso se puede afirmar que son el origen del cálculo de probabilidades, transformado después en una rama bastante importante de las matemáticas.

Es también un matemático de los más brillantes, John von Newmann (1903-1957), quien desarrolla lo que hoy se llama la teoría de juegos, cuyo objeto es el estudio de las consecuencias de los comportamientos individuales o colectivos, en interacción; la teoría acentúa la noción de equilibrio, para lo cual el problema de la coordinación es esencial.

Von Newmann fue el primero que estableció un nexo entre la noción de equilibrio y la de punto fijo de una función, tal como se emplea en matemáticas; realmente de la misma manera que un punto fijo x de una función f permanece constante mientras se le aplica la función -el punto fijo es tal que (f(x)=x)-; un equilibrio “no se mueve”, es fijo, cuando está sometido a distintas “fuerzas” de las cuales él es la resultante. De tal manera en una situación de “juego” dónde los individuos toman decisiones, anticipándose a las de otros agentes, hay equilibrio si sus anticipaciones son confirmadas en el momento en el cual las decisiones de cada uno las conocen todos; ahora este equilibrio puede ser considerado como un punto fijo de la función que hace corresponder las selecciones antes que las decisiones “de los otros” sean conocidas a las selecciones -eventuales- después de que estas han sido anunciadas.

Es mediante el empleo de esta especie de analogía que John Nash prueba en 1950, que todo juego no cooperativo, es decir, aquél en el cual cada uno sólo se preocupa por sus propias ganancias, admite al menos un equilibrio. Además, su demostración se apoya de manera decisiva en el teorema del punto fijo, establecido en 1910 por el matemático Jan Brower, que establece que toda función continua y limitada que “no efectúa saltos” y sólo toma valores finitos, admite al menos un punto fijo.

El procedimiento de Nash fue retomado y adaptado por los microeconomistas que se preguntaban sobre los equilibrios de sus modelos; en la medida en que el teorema del punto fijo permite generalmente responder a una cuestión como aquella, se puede decir que la microeconomía actual se construye de tal manera que se cumplan las hipótesis de aquel teorema y se asegure en consecuencia la existencia de equilibrios. Esta explicación vale particularmente para el modelo de Arrow-Debreu, que es el modelo básico para la microeconomía.

Volver al índice

Enciclopedia Virtual
Tienda
Libros Recomendados


1647 - Investigaciones socioambientales, educativas y humanísticas para el medio rural
Por: Miguel Ángel Sámano Rentería y Ramón Rivera Espinosa. (Coordinadores)

Este libro es producto del trabajo desarrollado por un grupo interdisciplinario de investigadores integrantes del Instituto de Investigaciones Socioambientales, Educativas y Humanísticas para el Medio Rural (IISEHMER).
Libro gratis
Congresos

15 al 28 de febrero
III Congreso Virtual Internacional sobre

Desafíos de las empresas del siglo XXI

15 al 29 de marzo
III Congreso Virtual Internacional sobre

La Educación en el siglo XXI

Enlaces Rápidos

Fundación Inca Garcilaso
Enciclopedia y Biblioteca virtual sobre economía
Universidad de Málaga